A quantum computer is a hypothetical device for computation that makes direct use of distinctively quantum mechanical phenomena, such as superposition and entanglement, to perform operations on data. In a classical (or conventional) computer, information is stored as bits; in a quantum computer, it is stored as qubits (quantum bits). The basic principle of quantum computation is that the quantum properties can be used to represent and structure data, and that quantum mechanisms can be devised and built to perform operations with this data.
Although quantum computing is still in its infancy, experiments have been carried out in which quantum computational operations were executed on a very small number of qubits. Research in both theoretical and practical areas continues at a frantic pace, and many national government and military funding agencies support quantum computing research to develop quantum computers for both civilian and national security purposes, such as cryptanalysis.
If large-scale quantum computers can be built, they will be able to solve certain problems much faster than any of our current classical computers (for example Shor's algorithm). Quantum computers are different from other computers such as DNA computers and traditional computers based on transistors. Some computing architectures such as optical computers may use classical superposition of electromagnetic waves, but without some specifically quantum mechanical resources such as entanglement, they do not have the same computational speed-up as quantum computers.